RESISTANCE TO MOTION IN TURBULENT
FLOW OF LIQUID FILM AND OF GAS

IN VERTICAL TUBES

I. M Fedotkin, M, N. Chepurnoi, ‘ UDC 532.5.536.24
V. E. Shnaider, and V. A, Semenovskii

Expressions are obtained for the pressure losses and the friction coefficient of the film by solv-
ing separate equations of motion for each phase. Theoretical and experimental results are com-

pared,

An efficient method of improving heat- and mass-exchange processes is to transmit them in thin layers.
A simultancous flow of liquid film and of gas in a vertical tube can be described by a system of equations [1]
which in abbreviated notation can be written as follows [2]:
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By introducing the variable y=R—r and transforming Eq, (2) with the aid of (1), one easily obtains
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Our solution of Eq. (3) must satisfy the following boundary conditions:
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From the relations (3) and (4) one can easily establish a relationship between the pressure gradient and
the tangential stress on the flow boundaries. If for Egs. (3) one refers to liquid and gas components, integrates
them with respect to y from 0 to 8 and from & to R, respectively, and combines the results, one can find
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In the case of turbulent motion the tangential stresses are given by the relations
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where the mixing path length ; which appears in (7) is found by adopting a model of turbulent mixing of Van
Driest [1, 3] modernized by Spalding.
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Fig. 1

Fig. 1. Resistance coefficients evaluated from the formula (12): 1) Rey- 1074=1.4; 2) 1.8;
3) 2.2; 4) 2.6. '

Fig. 2. Comparison of pressure losses from the formulas (12) and (5) with those obtained

experimentally; --ﬁf, N /m3,
X

For one dimensional steady flow, Eq. (3) applied to the liquid phase is brought to the form
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if the expressions (5) and (7) are used after transformations in dimensionless form.

In the latter expression one adopts the mean flow velocity in the film as a measure of velocity and the
tube radius as a lincar measure. Equation (8) is quadratic for the derivative %E?_ and can easily be solved for

this derivative. However, it is still not known what sign (plus or minus) shouldbeset in front of the square
doT,

root, It is, therefore, expedient to introduce in (8) the change u_—_—dy—;._— and to differentiate it with respect to
y T the latter yiclds the equation
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The expression (9) is a particular case of the Abel equation of the second kind; after the restitution of
the original variables its solution is
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To find the derivative of the axial velocity of the gas flow component one must set i =2 in Eq, (3) and
carry out operations similarly as above; this results in the following:
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In the above expression the mean gas velocity V,, has been adopted as the velocity scale unit.
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The condition that the tangential components (4)- are continuous is valid on the phase separation boundary;
the latter is used to determine from the formulas (10) and (11) the resistance coefficient
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In Fig. 1 computation results are shown of the friction coefficients in the case of a sinking annular flow
versus Reynolds numbers for both phases. It can be seen from Fig. 1 that a decisive effect on the values of the
resistance coefficients is exerted by the gas component. I has up until now been very difficult to compare the
theoretically ohtained results shown in Fig. 1 with the experimental data, since the direct measurements of
tangential stresses in a two-phase flow are very complex. In our case the simplest comparison, as well as the
most convenient one, is between the theoretical and experimental data on head-pressure losses. In Fig. 2 spe-
cific pressure losses are shown versus the dimensionless film thickness 3* and the'Reynolds numbers for
both phases obtained with the aid of (5) and (12) (continuous lines). Experimental values are also shown mea-
sured on a setup [4] for an annular air —water sinking flow in a tube of 30 mm diameter (dashed lines). It can
be seen from the diagram that thére is a satisfactory agreement between the theoretical and experimental data
on pressure losses. For given flow rates the relations shown in Fig. 2 enable one to find not only the pressure
gradient, but also the corresponding thickness of the liquid film. T should be mentioned here that the theoreti-
cal and experimental results were obtained under the conditions of purely film state of the flow when the entire
liquid moves in the film.

NOTATION

T, X, radial and axial cylindrical coordinates; R, tube radius; &, film thickness; 7, mixing path length;
Vir, Vix, corresponding velocity projections; p,_, density; vy, kmematte viscosily; P : pressure; Ti, frictional
stress; g, gravity acceleration; Re; =47, 6 v71; Rey=20p (R—5) v31; Fry =¥} 2 @8)7L; Fry=vi[2s®-5)1"Y
5* =gl 3 v=2/3  mdices: i=1, liquid components; i =2, gas components; §, 0, Values on the film surface and
on the tube wall the bar on top shows the mean values, and the symbol «+>, dimensionless quantities of the
type vfx—le/ Vix; 6 +=6/R and others.
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